

Table of contents

28

Introduction	3	2. Carbon footprint	10	3. Annex
		2.1. Corporate	11	
1. Scope of the calculation	5	2.2. Ronse	15	
1.1. Organizational scope	6	2.3. Manchester	18	
1.1.1. Organizational boundaries	6	2.4. Fleurus	21	
1.1.2. Reporting year & Base year	7	2.5. Milton Keynes	24	
1.1.3. Consolidation approach	8	2.6. Conclusion	27	
1.2. Operational scope	9			

Introduction

Our mission - M+A Matting

At M+A Matting, our mission goes beyond mere business objectives – it's about embracing responsibility and driving change. In our latest Annual Emission Report, we proudly share our journey towards a more sustainable future. Guided by innovation and fueled by our commitment to environmental stewardship, we lay bare our emissions data, both the challenges and the triumphs. As we reflect on the past year we envision a cleaner, greener path forward. Through transparency, accountability, and unwavering dedication, we aim to not only mitigate our carbon footprint but also inspire others to join us in this vital quest for a healthier planet. Together, we're not just reporting numbers; we're igniting a movement toward a brighter, more sustainable tomorrow.

Summary of Report

transparency, accountability & unwavering dedication.

our commitment

most substantial influence on emissions lies within scope 3*

* purchased goods & services, endof-life treatment of sold products, use of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution more sustainable waste management

transition from conventional raw materials to sustainable alternatives 01.

Scope of the Calculation

1.1. Organizational scope

1.1.1. Organizational boundaries

This year's annual emission report provides a comprehensive overview of the environmental footprint of **M+A Matting**. While our entire company operates with a commitment to sustainability, this report zeroes in on the **specific emissions data** and **initiatives** undertaken by this branch. By delving into the intricacies of this localized operation, we gain deeper insights into the challenges and opportunities **unique** to this location. This focused approach allows us to **tailor strategies** that align with the local environment and community, driving meaningful change where it matters most. As we unveil the emissions data for M+A Matting plant 14 - Milton Keynes, we showcase our dedication to transparency and accountability on a localized scale, contributing to the broader sustainability goals of our entire organization.

- Plant 6, Ronse Klein Frankrijkstraat 14, 9600 Ronse, Belgium
- Plant 8, Bartex Rue du Rabiseau 5, 6220 Fleurus, Belgium
- Plant 11, Manchester Hilton Fold Lane, M24 2HZ Middleton, UK
- Plant 14, Milton Keynes 3D Michigan Drive, Milton Keynes MK15 8HQ

1.1.2. Reporting year & Base year

In paving the way for a greener future, we established **2024 as our base year** for emissions calculations. This pivotal year serves as our benchmark, capturing the starting point from which we measure our progress and advancements in emissions reduction. Going forward, our **commitment** to **transparency** and **accountability** remains steadfast, as we embark on an annual tradition of reporting our emissions data. Each year's report will serve as a testament to our dedication to sustainability, illustrating the strides we make year by year in our journey towards a more eco-conscious operation. With this iterative approach, we aim to not only track our progress but to inspire a culture of continuous improvement within our organization and beyond.

1.1.3. Consolidation approach

In our pursuit of accurate and comprehensive emissions assessment, we have chosen to adopt the **operational control approach**. This strategic decision empowers us to measure our environmental impact by focusing on the activities over which we maintain direct operational control.

By honing in on this **methodology**, we ensure that our emissions calculations encompass the areas where we can directly influence change. This approach enables us to identify opportunities for optimization, set actionable reduction targets, and drive meaningful progress in our sustainability journey.

Our **commitment to transparency** is further strengthened as we unveil our emissions data rooted in the operational control approach, a testament to our holistic approach to responsible business practices.

1.2. Operational scope

Following the GHG protocol the following categories were taken in consideration during the calculation:

Scope 1

- Stationary combustion
- Mobile combustion

\rightarrow Scope 2

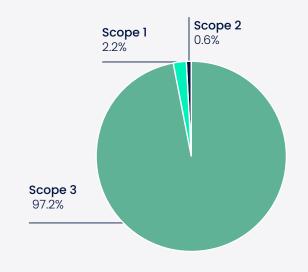
Purchased electricity

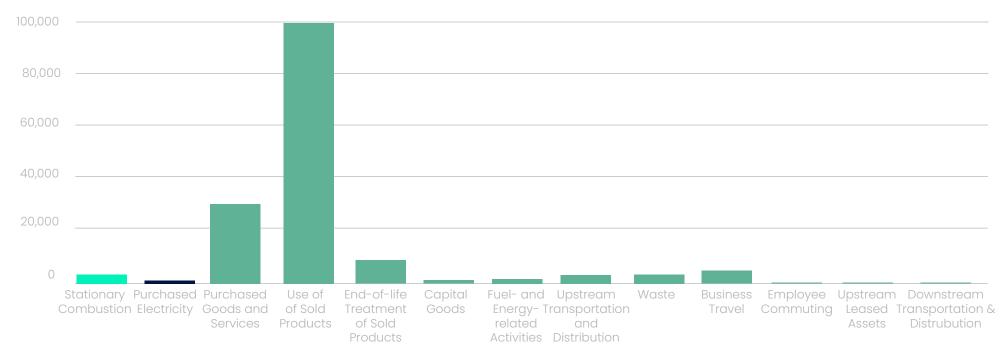
→ Scope 3

- Cat.1. Purchased goods and services
- Cat.2. End-of-life treatment of sold products
- · Cat.3. Capital goods
- Cat.4. Fuel- and energy- related activities (not included in scope 1 or scope 2)
- Cat.5. Upstream transportation and distribution
- Cat.6. Waste generated in operations
- Cat.7. Business travel
- Cat.8. Employee commuting
- Cat.9. Upstream leased assets
- Cat.10. Downstream transportation and distribution

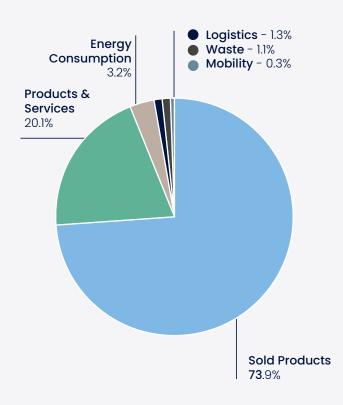
02.

Carbon footprint


2.1. Corporate

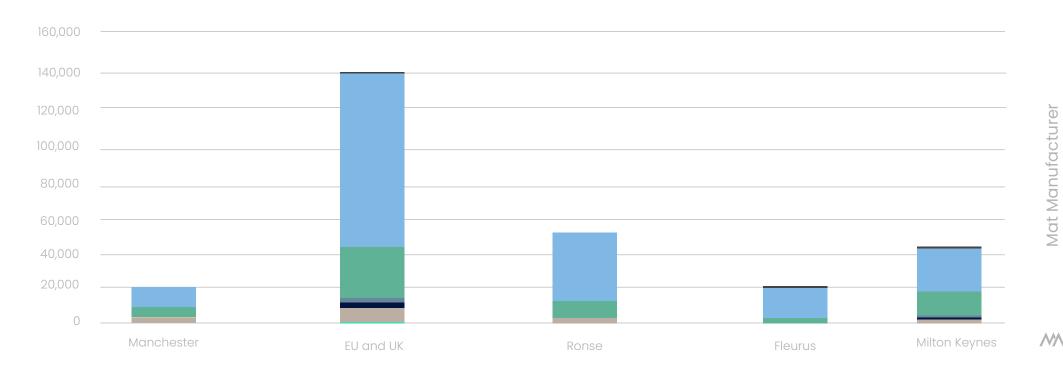

Total emissions per scope in Co₂e (tonne)

Scope 1: stationary & mobile combustion, fugitive emissions


Scope 2: purchased electricity

Scope 3: purchased goods & services, end-of-life treatment of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution, use of sold products

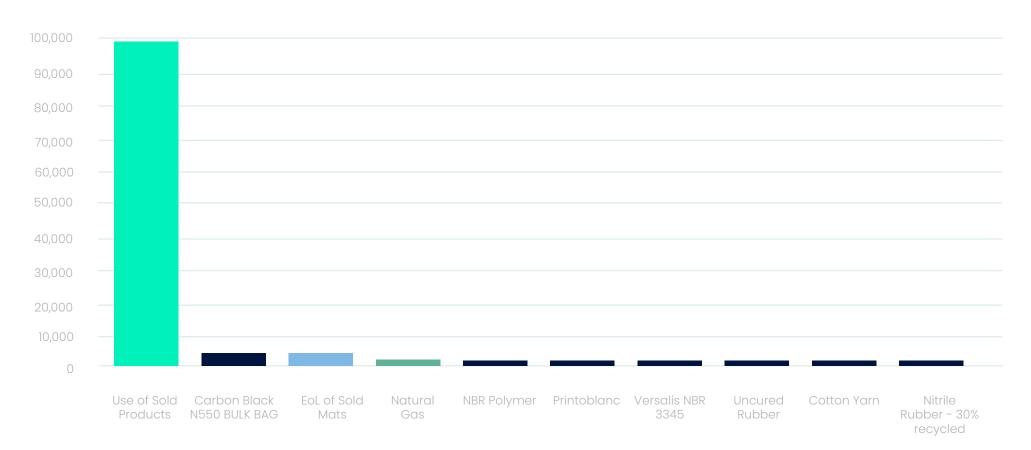
Overview emissions 2024


Total emissions (tCo ₂ e)	141,021.1
Emissions per production unit (kgCo ₂ e/m²)	37.6
Emissions per revenue (tCo ₂ e/1 K euro)	1.4

The **2024 Emission Overview** provides a comprehensive breakdown of the company's carbon footprint across various operational activities. The total emissions amount to 141,021.1 tCO₂e, with a significant contribution from **sold products (73.9%) followed by products & services (20.1%)**. Lesser contributors include energy consumption (3.2%), logistics (1.3%), waste (1.1%) and mobility (0.3%). Emission efficiency metrics reveal 37.6 kgCO₂e per production unit and 1.4 tCO₂e per thousand euros of revenue, highlighting key areas for sustainability improvement and climate impact management.

Total emissions per plant (tco,e)

- Capital goods
- **Energy consumption**
- Fugitive/Process emissions
- Logistics
- Mobility
- Products & services
- Sold products
- Waste

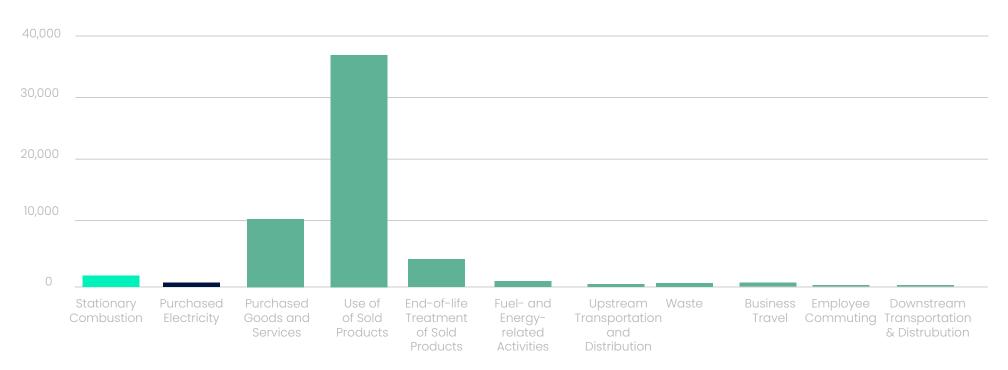

This chart illustrates the breakdown of carbon emissions across different facilities, including Manchester, Milton Keynes, Ronse, and Fleurus, while the EU & UK category represents the total corporate emissions, encompassing all these plants. Products & services and sold products are the primary contributors to emissions across all facilities, with Manchester and Ronse showing significant emissions and Milton Keynes and Fleurus contributing comparatively less. This comprehensive view underscores the overall corporate carbon footprint, emphasizing the importance of addressing key emission sources at both individual facilities and the corporate level.

Top 10 sources of emissions (tCo₂e)

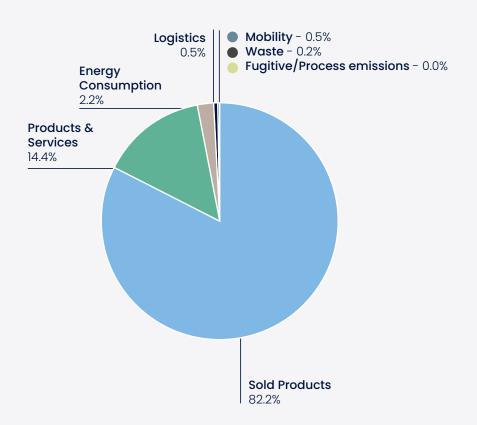
The "**Top 10 Sources of Emissions**" chart highlights the **primary contributors** to the company's carbon footprint. The most significant source is the **use of sold products**, accounting for 99 544 tCO₂e, far surpassing other emission sources. This breakdown provides valuable insight into key areas where interventions can significantly reduce emissions, with transportation and purchased goods being critical focus points.

- Use of Sold Products
- Purchased Goods and Services
- Stationary Combustion
- End-of-Life Treatment of Sold Products


2.2. Ronse


Total emissions per scope in Co₂e (tonne)

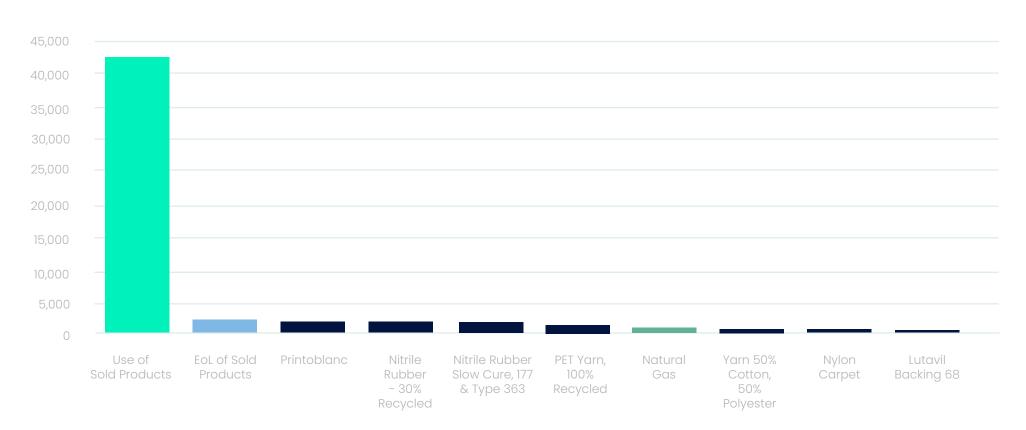
Scope 1: stationary & mobile combustion, fugitive emissions


Scope 2: purchased electricity

Scope 3: purchased goods & services, end-of-life treatment of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution, use of sold products

Overview emissions 2024

Total emissions (tCo ₂ e)	54,473.6
Emissions per production unit (kgCo ₂ e/m²)	33.8
Emissions per revenue (tCo ₂ e/1 K euro)	1.2


This overview highlights the composition and trends of carbon emissions at the **Ronse plant (Plant 6)**. The pie chart shows that the majority of emissions stem from **sold products (82.2%)**, followed by products & services (14.4%), energy consumption (2.2%), logistics (0.5%), mobility (0.5%), waste (0.2%), and fugitive/process emissions (0.0%).

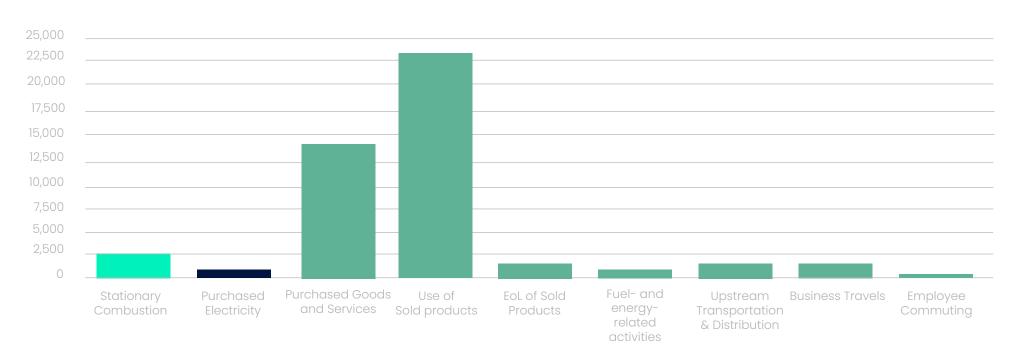
Top 10 sources of emissions (tCo₂e)

This bar chart identifies the **top 10 sources contributing to emissions at Plant 6 in Ronse**. The major contributors are primarily from **use of sold products**, followed by End-of-Life treatment of sold products and purchased goods & services.

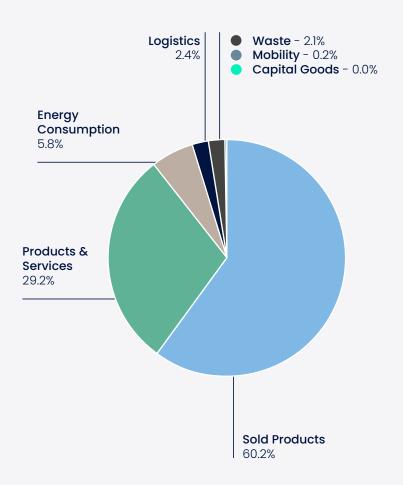
The data underscores the importance of targeting the highest-emission materials and processes to reduce the overall carbon footprint effectively. **Further efforts are needed** to explore more sustainable alternatives, especially for raw materials and combustion processes.

- Use of Sold Products
- Purchased Goods and Services
- Stationary Combustion
- End-of-Life Treatment of Sold Products

2.3. Manchester


Total emissions per scope in Co₂e (tonne)

Scope 1: stationary & mobile combustion, fugitive emissions

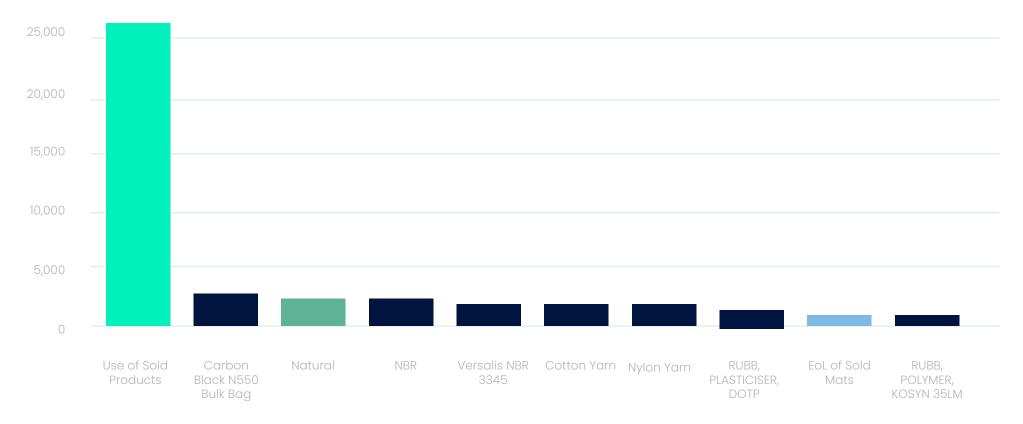

Scope 2: purchased electricity

Scope 3: purchased goods & services, end-of-life treatment of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution, use of sold products

Overview emissions 2024

Total emissions (tCo ₂ e)	45,491.10
Emissions per production unit (kgCo ₂ e/m²)	46.1
Emissions per revenue (kgCo ₂ e/1 K euro)	1502.5

This chart and data overview summarize the emissions profile for Plant 11, **Manchester** for the year **2024**. The total emissions, efficiency metrics, and contribution by source category highlight key insights into the plant's carbon footprint.


Sold Products represent a significant area to explore more sustainable materials. The efficiency metrics indicate improvements in emissions relative to production and revenue, reflecting efforts to reduce the plant's carbon intensity.

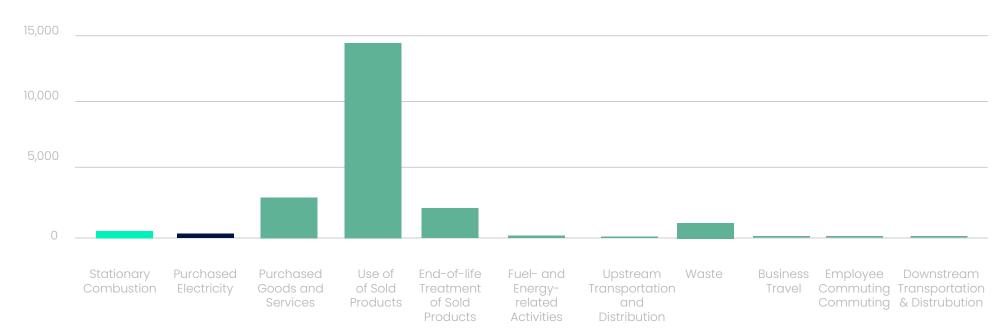
Top 10 sources of emissions (tCo₂e)

This bar chart identifies the **top 10 sources contributing to emissions at Plant 11, Manchester**. The major contributors are primarily from **Use of sold products**, followed by Purchased Goods & Services.

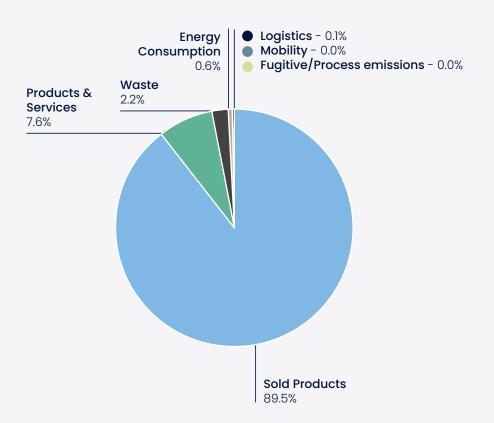
The data underscores the importance of targeting the highest-emission materials and processes to reduce the overall carbon footprint effectively. Further efforts are needed to explore more sustainable alternatives, especially for raw materials and combustion processes.

- Use of Sold Products
- Purchased Goods and Services
- Stationary Combustion
- End-of-Life Treatment of Sold Products

2.4. Fleurus


Total emissions per scope in Co₂e (tonne)

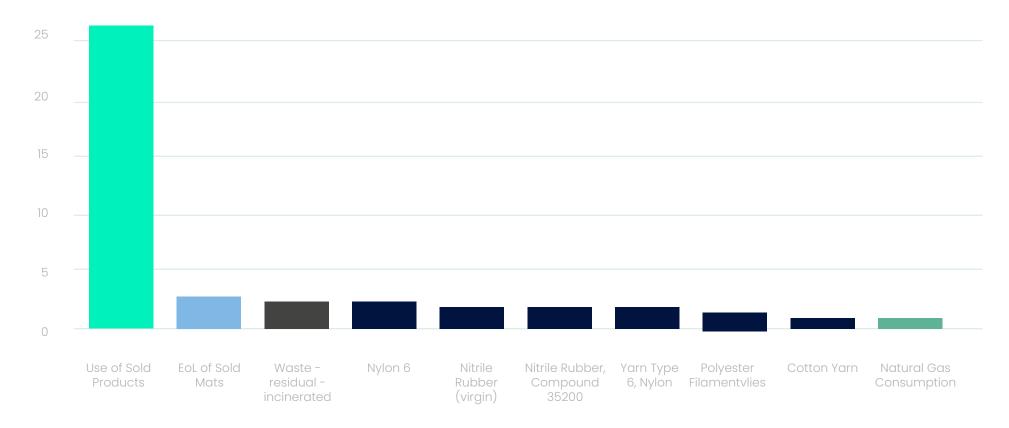
Scope 1: stationary & mobile combustion, fugitive emissions


Scope 2: purchased electricity

Scope 3: purchased goods & services, end-of-life treatment of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution, use of sold products

Overview emissions 2024

Total emissions (tCo ₂ e)	20,886.3
Emissions per production unit (kgCo ₂ e/m²)	31
Emissions per revenue (tCo ₂ e/1 K euro)	1.5

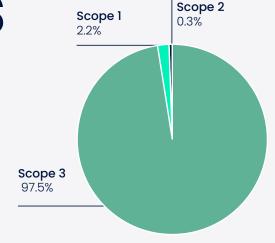

This overview highlights the composition and trends of carbon emissions at the **Fleurus plant (Plant 8)**. The pie chart shows that the majority of emissions stem from **sold products (89.5%)**, followed by products & services (7.6%), waste (2.2%), energy consumption (0.6%), logistics (0.1%), mobility (0.0%), and fugitive/process emissions (0.0%).

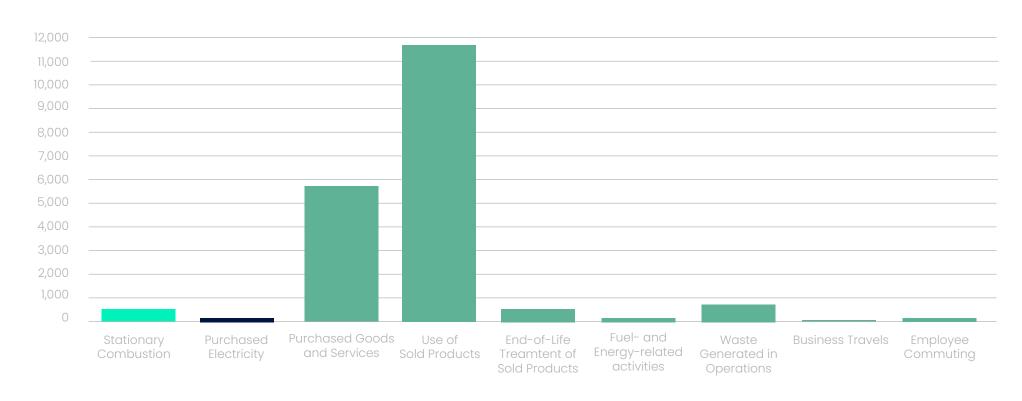
Top 10 sources of emissions (kgCo₂e)

This bar chart identifies the **top 10 sources contributing to emissions at Plant 8, Fleurus**. The major contributors are primarily from **the Use of sold products** followed by End-of-Life Treatment of Sold Products.

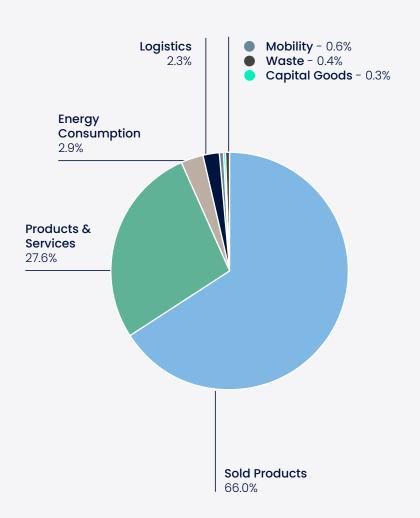
The data underscores the importance of targeting the highest-emission materials and processes to reduce the overall carbon footprint effectively. Further efforts are needed to explore more sustainable alternatives, especially for waste and raw materials.

- Use of Sold Products
- Waste generated in operations
- Purchased Goods and Services
- Stationary Combustion
- End-of-Life Treatment of Sold Products


2.5. Milton Keynes


Total emissions per scope in Co₂e (tonne)

Scope 1: stationary & mobile combustion, fugitive emissions

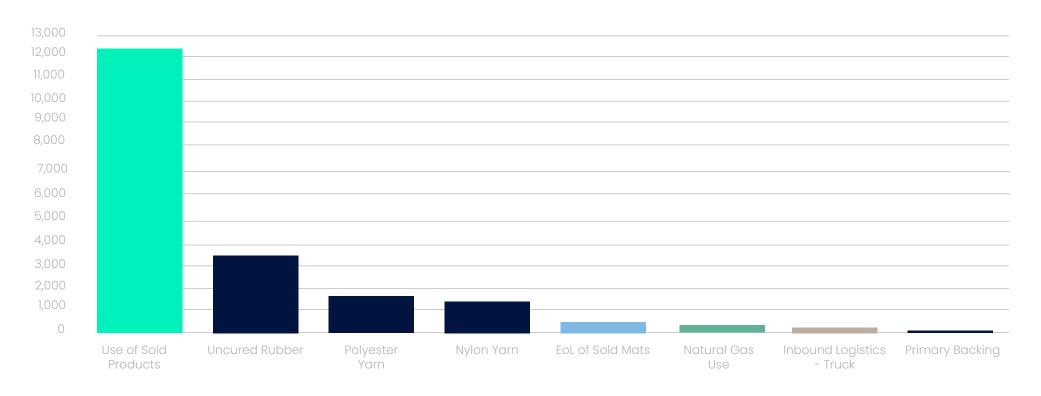

Scope 2: purchased electricity

Scope 3: purchased goods & services, end-of-life treatment of sold products, capital goods, fuel- and energy-related activities, upstream transportation and distribution, waste generated in operations, business travels, employee commuting, upstream leased assets, downstream transportation and distribution, use of sold products

Overview emissions 2024

Total emissions (tCo ₂ e)	20,170.0
Emissions per production unit (kgCo ₂ e/m²)	42.1
Emissions per revenue (kgCo ₂ e/1 K euro)	2.3

This chart and data overview summarize the emissions profile for Plant 14, **Milton Keynes** for the year **2024**. The total emissions, efficiency metrics, and contribution by source category highlight key insights into the plant's carbon footprint.


Sold Products represent a significant area to explore more sustainable materials. The efficiency metrics indicate improvements in emissions relative to production and revenue, reflecting efforts to reduce the plant's carbon intensity.

Top 10 sources of emissions

This bar chart identifies the **top 10 sources contributing to emissions at Plant 14, Milton Keynes**. The major contributors are primarily from **Use of Sold Products**, followed by Purchased Goods & Services and End-of-Life Treatment of Sold Products.

The data underscores the importance of targeting the highest-emission materials and processes to reduce the overall carbon footprint effectively. Further efforts are needed to explore more sustainable alternatives, especially for waste and raw materials.

- Purchased Goods and Services
- Stationary Combustion
- Upstream Transportation and Distribution
- Use of Sold Products
- End-of-Life Treatment of Sold Products

Conclusion

The 2024 emissions assessment highlights that **scope 3 activities dominate the company's carbon footprint**, particularly the use of sold products and purchased goods and services, which together **account for over 90% of total emissions.**

Corporate emissions reached 141,021 tCO₂e, with site-level differences showing **Manchester and Ronse as the largest contributors**, while Fleurus and Milton Keynes remain smaller but still significant sources.

The efficiency indicators—37.6 kgCO₂e per production unit and 1.4 tCO₂e per €1k revenue—demonstrate measurable intensity, but also highlight areas for improvement.

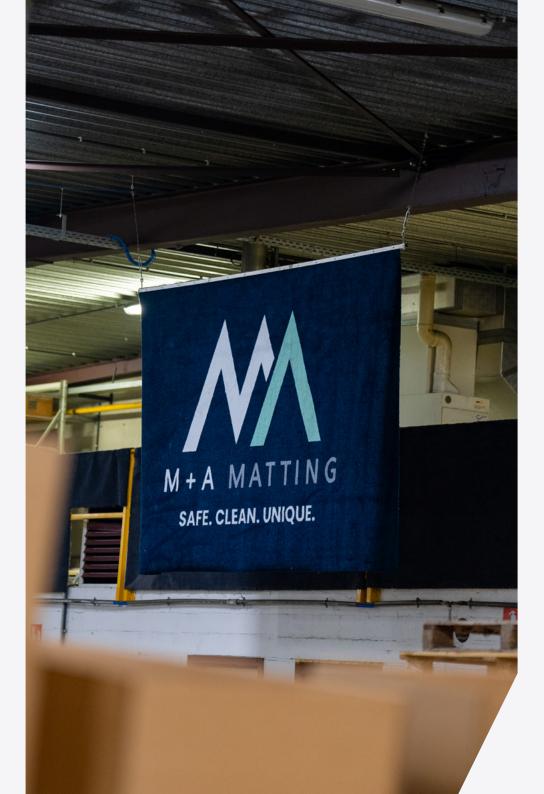
Each plant's profile confirms the need to **prioritize** material innovation, waste reduction, and energy optimization, with targeted strategies per facility to achieve meaningful reductions.

Overall, the report reinforces the company's commitment to transparency, accountability, and climate leadership. **Achieving future reductions** will require scaling sustainable material choices, optimizing logistics, and engaging customers on product use-phase impacts.

03.

Annex

 $\wedge \wedge$


The urge of

climate action

The urgency for credible climate action has only intensified as we moved into 2025. Global temperatures in 2024 reached record highs, averaging around 1.6 °C above pre-industrial levels. For the first time, the 1.5 °C threshold was exceeded over a full year, underscoring how narrow the remaining window has become to prevent the worst effects of climate change.

The IPCC's Sixth Assessment Report makes it clear that limiting warming to 1.5 °C is now extremely challenging, even with unprecedented efforts. Yet it remains crucial to stay as close as possible to this limit to avoid crossing irreversible tipping points that could trigger severe and unpredictable consequences for ecosystems and human societies.

Science indicates that global greenhouse gas emissions must peak no later than 2025 and decline rapidly towards net zero by 2050. This decade is therefore decisive for securing a livable future, and every reduction achieved now will lessen long-term risks.

The key messages of the report are clear.

Human influence has warmed the climate at a rate that is unprecedented in at least

2000 years.

Many changes due to greenhouse gas emissions are irreversible for centuries to millennia, especially changes in

ocean, ice sheets and global sea level.

Human induced climate change is already affecting many weather and climate extremes in

rainfall, droughts and tropical cyclones.

region will be spared. If humanity continues on this trajectory, the

1.4°C

threshold is expected to be exceeded within the next 20 years.


Stabilizing the climate will require rapid, strong, and sustained reductions in greenhouse gas emissions. Yet reductions alone will not be enough. The IPCC has made clear that pathways consistent with limiting warming to 1.5 °C involve not only achieving **very low emissions** but also reaching net zero and deploying solutions that actively **remove CO2 from the atmosphere.**

Momentum toward net zero continues to build. By 2025, thousands of companies, cities, regions, and financial institutions worldwide have made climate commitments, covering a large share of global emissions and economic activity. At the same time, there is growing recognition that these pledges must be **transparent**, **robust**, **and verifiable** to ensure real impact. The focus is now shifting from promises to **credible delivery**, with stronger standards and accountability mechanisms emerging to track progress.

Mat Manufacturer

With the Paris Agreement (2015), 196 governments committed to limit global warming to well below 2 °C, while pursuing efforts to stay at 1.5 °C. A decade later, it remains the cornerstone of global climate action.

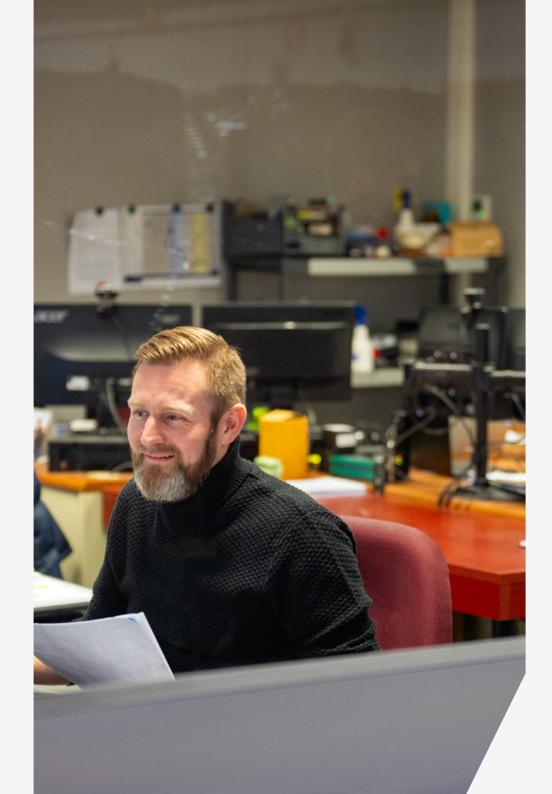
Reaching net-zero emissions globally by mid-century remains essential. To date, almost all countries have ratified the Paris Agreement, together covering the vast majority of global emissions. The EU continues to position itself as a frontrunner with its European Green Deal and the legally binding target of a 55% emissions reduction by 2030 compared to 1990 levels. Through the Fit for 55 package and ongoing policy updates, Europe is translating its ambition into concrete action on the path to full climate neutrality by 2050.

Businesses are increasingly stepping up to address the climate crisis through initiatives such as **We Mean Business, Business Ambition for 1.5 °C, the Climate Ambition Alliance, and Race to Zero**. By 2025, Race to Zero unites **over 15,700 members,** making it the largest coalition ever assembled to halve global emissions by 2030.

Corporate transparency is also accelerating: **over 24,800 companies** disclosed environmental data through **CDP by mid-2025**, representing nearly **two-thirds of global market capitalization**. These developments highlight a clear shift from ambition to action, with businesses increasingly aligning with global net-zero goals while being held accountable for measurable progress.

Climate action is not only a moral duty.

Climate-related risks pose a significant threat to the survival of companies. Businesses today face not only physical risks from climate impacts but also **legal, financial, and regulatory risks.** One clear example is **carbon pricing and taxes**. As of 2025, more than 70 carbon pricing or emissions trading systems are in place worldwide, covering **over 25% of global emissions** and generating tens of billions of euros in revenues. Carbon prices vary widely, from **under €1 per tonne CO₂** in some countries to over €100 per tonne CO₂ in others, reflecting the growing cost of carbon in life with global mitigation targets.


The social cost of carbon is estimated between €190–380 per tonne CO_2 and the price needed to keep global warming below 1.5 °C is projected at €50–100 per tonne CO_2 by 2030. This aligns with trends in the EU Emissions Trading System (EU ETS), where allowance prices have risen from €5 in 2017 to over €90 per tonne by 2021, and currently fluctuate around €90–100 per tonne in 2025.

Companies are increasingly responding to these risks. The Task Force on Climate-Related Financial Disclosures (TCFD) shows that roughly two-thirds of the world's 100 largest public companies now report climate-related risks in line with TCFD recommendations, demonstrating that climate risk management has become a mainstream business priority.

It is clear that a company will only survive if its activity is viable in the net-zero society of 2050.

Therefore companies will be facing profound transformations in the coming three decades.

But climate action has also become a **huge business opportunity**. Investors, consumers, governments and other stakeholders require companies to take action. Taking action gives companies a serious advantage on several domains including brand identity, access to funds and investments, attractivity in recruitment, etc.

Thank you.